Table of Contents
1. Installation
Declare package install in packages.el, in Doom1 for instance:
(package! org-latex-impatient :recipe (:host github :repo "yangsheng6810/org-latex-impatient" :branch "master"))
Add env setting of NODE_OPTIONS
for avoiding failure in parsing xml when tex2svg
generates svg with deprecation warning in xml:
(use-package org-latex-impatient :defer t :hook (org-mode . org-latex-impatient-mode) :init (setq org-latex-impatient-tex2svg-bin ;; location of tex2svg executable (file-truename "~/node_modules/mathjax-node-cli/bin/tex2svg")) (setenv "NODE_OPTIONS" "--no-deprecation") (setq max-image-size nil))
2. Org-latex-preview-impatient2 preview
Open a .org file and insert content like following latex segements, then enable org-latex-impatient-mode
by M-x org-latex-impatient-mode
.
2.1. Inline Math
We are aware that the solutions to \(ax^{2}+bx+c=0\) are \(x_{1},x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)
2.2. Display Math
\[x_{1},x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\]
3. Kelly Criterion
\begin{equation}
f^* = \frac{bp - q}{b}
\end{equation}
4. Bayes’ theorem
\begin{equation}
P(A|B) = \frac{P(B|A)* P(A))}{P(B)}
\end{equation}
5. Shannon–Hartley theorem
\begin{equation}
C=B\log_{2}{(1+\frac{S}{N})}
\end{equation}
6. Maxwell’s equations
\begin{equation}
\begin{aligned}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \quad &\text{(Gauss's law)} \\
\nabla \cdot \mathbf{B} &= 0 \quad &\text{(Gauss's law for magnetism)} \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \quad &\text{(Faraday's law)} \\
\nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \quad &\text{(Ampère–Maxwell law)}
\end{aligned}
\end{equation}
7. Curvature
\begin{equation}
\kappa(x) = \frac{ \left| f''(x) \right| }{ \left( 1 + \left(f'(x)\right)^2 \right)^{3/2} }
\end{equation}
8. ROI, Return on Investment
\begin{equation}
\text{ROI} = \frac{\text{收益} - \text{投资成本}}{\text{投资成本}} \times 100\%
\end{equation}
9. Limit definition of the constant e
\begin{equation}
e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n
\end{equation}